

Preliminary efficacy and safety results from the TATCIST trial: A PSMA-directed targeted alpha therapy with FPI-2265 (²²⁵Ac-PSMA-I&T) for the treatment of metastatic castration-resistant prostate cancer

Ebrahim S. Delpassand,¹ Mohammad Jawed Hashmi,¹ Julia Kazakin,² A. Omer Nawaz,² Gabriella Garufi,² Joanne Schindler,² Luke Nordquist³

¹Excel Diagnostics and Nuclear Oncology Center, Houston, TX; ²Fusion Pharmaceuticals Inc., Hamilton, ON, Canada; ³Urology Cancer Center & XCancer, Omaha, NE

Highlights

- The efficacy and safety profile of FPI-2265 is consistent with data from the published literature, which includes almost 500 patients treated with PSMA-targeted Ac radiopharmaceuticals
- In this heavily pretreated population, PSA50 was 50%, and was 69% when a PSMA PET SUV_{mean} cutoff of 6 was used
- Durable PSA response by week 24 was observed in participants with PSMA SUV_{mean} >6
- No discontinuations occurred owing to xerostomia
- Safety signals were consistent with the literature, where higher grades of hematologic toxicity were observed mainly in participants with superscan or who had received multiple lines of chemotherapy
- A registration-enabling phase 2/3 trial will further evaluate the efficacy/safety of FPI-2265

Introduction

Targeted radiopharmaceuticals are designed to deliver radiation specifically to cancer cells by combining a radionuclide with a ligand that binds with high affinity to a membrane antigen (e.g., prostate-specific membrane antigen [PSMA], somatostatin receptor).^{1,2}

β-emitting radioligand therapies (RLTs), such as lutetium-177 (¹⁷⁷Lu)-PSMA-therapy, have been shown to prolong radiographic progression-free (PFS) and overall survival (OS) in patients with metastatic castration-resistant prostate cancer (mCRPC); however, almost 50% of patients do not respond to this treatment, therefore identifying a further unmet medical need.^{2,3}

Targeted α -therapies have the potential to overcome limitations of β -therapies in that α -emitting radioisotopes have i) a higher probability of causing catastrophic double-strand DNA breaks and ii) a shorter radiation path length that may lessen unwanted exposure of surrounding healthy cells (Table 1).^{2,4}

Table 1. Comparison of radiotherapy approaches

	Composition	Primary Mechanism of Cell Death	Penetrating Power in the Body (Emission Travel Distance)
Alpha particles	2 protons and 2 neutrons	Double-strand DNA breaks	50–100 μm (~ few cells)
Beta particles	1 electron	Single-strand DNA breaks	Up to 12 mm
External beam	X-rays: High-energy electromagnetic radiation Gamma rays: High-energy photons	Single-strand DNA breaks	Several cm

Treatment with actinium-225 (225Ac)-PSMA-RLT including 225Ac-PSMA-I&T, a small molecule comprising PSMA-targeting ligand coupled with the multi-alpha emitter ²²⁵Ac radionuclide, has shown strong clinical activity in mCRPC across multiple studies.^{4,5} Decreased prostate-specific antigen (PSA) levels have been observed in 79% of treated patients, as well as a \geq 50% decline in PSA (PSA50) in 50% of patients, including those previously treated with ¹⁷⁷Lu-PSMA-617.⁵

This herein described TATCIST study was designed to confirm the safety and efficacy results of ²²⁵Ac-PSMA-I&T (renamed FPI-2265) to results published to date.

FPI-2265 (225Ac-PSMA-I&T)

• FPI-2265 is a small molecule containing a PSMA-targeting ligand coupled with an ²²⁵Ac radionuclide that is currently being evaluated in the phase 2 TATCIST study (Figure 1 and Figure 2)

Figure 1. Chemical structure of ²²⁵Ac-PSMA-I&T

Figure 2. Mechanism of action of ²²⁵Ac-PSMA-I&T

Methods

Figure 3. TATCIST open-label trial in participants with mCRPC

Participant population: Progressive mCRPC based on serum PSA, soft tissue, and/or bone progression; positive PSMA PET/CT^a scans to confirm PSMA expression; ECOG PS 0-2/0-1b

Key Inclusion Criteria Progressive mCRPC

- Positive PSMA PET/CT
- Must have received ≥1 ARPI
- Prior Lu-PSMA RLT permitted
- Prior taxanes were allowed

Key Exclusion Criteria <6 weeks from prior

- myelosuppressive therapy **Skeletal metastases**
- presenting as superscan^{b,d}
- Known CNS or liver
- metastases^t >4 prior therapies^b

FPI-2265 100 kBq/kg (± 10%) IV every 8 weeks for up to 4 cycles

Primary endpoint:

first treatment)

• PSA50 (≥50% decline in

PSA by 12 weeks after

Safety and tolerability

Response based on

RECIST v1.1 criteria

Maximum % PSA decline

Non-progression by PCWG3

Secondary endpoints include:

Dose could be

de-escalated based on PSA response:

- PSA ≥50% decline: dose should be de-escalated to

87 kBq/kg - PSA >85% decline:

additional de-escalation to 75 kBq/kg, then 50 kBq/kg

NCT05219500: Trial Currently Enrolling Participants

^aThe TATCIST PSMA ligand study included both diagnostic gallium-68 (⁶⁸Ga) and 2-(3-{1-carboxy-5-[(6-[¹⁸F]fluoro-pyridine-3-carbonyl)amino]-pentyl}-ureido)-pentanedioic acid ([18F]DCFPyL) PET/CT. bRevised per a protocol amendment. eTreatment was continued until radiographic or clinical progression; serious or intolerable adverse events; completion of 4 RLT cycles; subject withdrawal or noncompliance; required use of prohibited treatment; sponsor/investigator decision; or death. ^dSuperscan is a bone scan that demonstrates markedly increased skeletal radioisotope uptake relative to soft tissues in association with absent or faint renal activity (absent kidney sign).

ARPI, androgen receptor pathway inhibitor; CNS, central nervous system; ECOG, Eastern Cooperative Oncology Group; IV, intravenously; Lu, lutetium; PCWG3, Prostate Cancer Clinical Trials Working Group 3; PET/CT, positron emission tomography/computed tomography; PS, performance status; RECIST, Response Evaluation Criteria in Solid Tumors.

Exploratory Analysis: Mean Standardized Uptake Value (SUV_{mean})

- Quantifying ⁶⁸Ga-labeled PSMA PET uptake may predict response in patients with prostate cancer who receive RLT
- Some studies have shown that SUV_{mean} may predict improved outcomes in patients with mCRPC⁶
- SUV_{mean}, a measure of PSMA PET uptake, is the average SUV within a region of interest⁷ - Lower SUV_{mean} has been associated with worse radiographic PFS and OS in patients treated with ¹⁷⁷Lu-PSMA-617⁸
- In this exploratory analysis, PSA50 was evaluated by PSMA SUV_{mean} >6 or ≤6

Results

Participant Disposition

- As of the data cutoff of March 1, 2024, 35 participants received ≥1 dose of FPI-2265 (Table 2), with 25 participants having ≥12 weeks follow-up
- 4 participants were identified as superscan
- Superscan participants are excluded from the efficacy analyses and reported separately in the safety analysis
- 1 participant was excluded from the PSA endpoint analysis due to uninterpretable PSA response

Table 2. Participant disposition

Participant Disposition	Ν
Participants received ≥1 dose of FPI-2265	35ª
Participants with ≥12 weeks of follow-up assessments after first administration	25
Safety population	25
Non-superscan participants	21
Superscan participants	4
Participants included in efficacy analysis	20 ^b

As of the March 1, 2024, data cut, 5 additional participants received the first treatment dose after January 30, 2024. b4 participants with skeletal metastases presenting as superscan were excluded from efficacy analyses following a protocol amendment; 1 participant with uninterpretable PSA data was excluded from all analyses

Presented at the American Association for Cancer Research (AACR) Annual Meeting; April 5-10, 2024; San Diego, CA

Results

 Baseline participant demographics and disease characteristics are presented in Table 3

Table 3. Baseline demographics and disease characteristics

Clinical Characteristics	Total Number of Participants N=25				
Age, y, median (range)	70 (52–84)				
PSA, ng/mL, median (range)	37.9 (0.14–4729)				
ECOG performance status, n (%)					
0–1	24 (96)				
2ª	1 (4)				
Gleason score, median (range)	8 (7–10) ^b				
SUV _{mean}					
Median (range)	6.3 (3.7–12.6)				
≤6	10 (40)				
>6	15 (60)				
Site of metastases, n (%)					
Bone	24 (96)				
Superscan ^{c,d}	4 (16)				
Lymph node	5 (20)				
Visceral	8 (32)				
Lines of prior anticancer therapy, n (%)					
Median (range)	4 (1–6)				
ARPI	25 (100)				
≥2	18 (72)				
1	7 (28)				
Chemotherapy	20 (80)				
Taxane	19 (76)				
≥2	10 (40)				
1	9 (36)				
Docetaxel	14 (56)				
Cabazitaxel	10 (40)				
Carboplatin ^e	11 (44)				
¹⁷⁷ Lu-PSMA RLT	9 (36)				
6 cycles	5 (20)				
1–3 cycles	4 (16)				
Radium-223	4 (16)				
Other (sipuleucel-T, olaparib)	6 (24)				

Participants enrolled based on an earlier protocol version. Following a protocol amendment, only participants with ECOG performance status 0–1 are eligible for enrollment; ^bData are missing for 3 participants; ^cParticipants enrolled based on an earlier protocol version. Following an amendment, superscan participants are excluded. dSuperscan status was determined via Technetium-99m bone scan. Carboplatin was given as part of a taxane regimen.

Primary Endpoint: PSA50 Response

• PSA50 was achieved in 10/20 participants (50%), regardless of prior Lu treatment (Figure 4) - PSA50 was achieved by 7/13 (54%) of Lu-naïve participants and by 3/7 (43%) of Lu-treated participants

Figure 4. Maximum percent PSA change from baseline during the treatment period (weeks 0–28) by prior Lu treatment

Exploratory Analysis: SUV_{mear}

- In participants with baseline PSMA SUV_{mean} >6 (n=13, overall; post-Lu, n=6), PSA50 was achieved in 9 participants (69%; Figure 5A)
- Durable PSA response by week 24 was observed in participants with PSMA SUV_{mean} >6 (Figure 5B)

Safety: FPI-2265 Exposure

- As of the March 1, 2024, data cut, participants received a total of 71 cycles of treatment, with a median of 3 cycles
- 7/10 participants had dose de-escalation due to a biochemical response of ≥PSA50

Safety: Treatment-Related Adverse Events

- In non-superscan participants, most hematologic and non-hematologic treatment-related adverse events (TRAEs) were grade 1 or 2 (Figure 6)
- 1 treatment-related death due to cerebral hemorrhage secondary to thrombocytopenia was reported in a superscan participant
- 2 (8%) participants discontinued treatment due to TRAEs, including 1 participant in the superscan group
- All incidences of xerostomia were grade 1–2 in severity (Figure 6)
- · There were no discontinuations due to xerostomia

Figure 6. TRAEs occurring in >10% of participants (safety population)

Superscan participants (n=4) Thrombocytope 25.0% Decreased white blood cell count 50.0% Decreased neutrophil cour 25.0% Xerostom Fatigu Dry eye Nause Dysgeusi 70 60 50 100 90 80 40

Conclusions

- Data from this prospective study support prior clinical reports on the safety and efficacy of ²²⁵Ac-PSMA-I&T (FPI-2265) despite enrolling a more heavily pretreated patient population • Preliminary efficacy data suggest that FPI-2265 has activity in heavily pretreated participants with progressive mCRPC, including those participants who had received prior ¹⁷⁷Lu-PSMA therapy
- PSA50 was achieved by 50% of participants overall, including 54% in the ¹⁷⁷Lu-naïve population and 43% in the ¹⁷⁷Lu-treated population • Safety and tolerability were consistent with other published studies of ²²⁵Ac-PSMA RLTs
- The majority of TRAEs were grade 1 or 2
- Xerostomia was the most common TRAE, and the majority of occurrences were grade 1
- Incidences of grade 1 and 2 xerostomia were 61.9% and 23.8%, respectively

^aParticipants were counted once in a preferred term category for the worst severity if >1 event occurred in that category.

- No participants discontinued because of this particular AE
- Hematologic toxicity was observed at an expected rate; the extent of bone marrow involvement (i.e., superscan or multiple sites of bone disease) appears to correlate with a higher rate of myelotoxicity
- In an exploratory analysis, PSA50 was achieved by 69% of participants with a baseline PSMA PET SUV_{mean} >6 These initial results support further investigation of FPI-2265
- An upcoming registration-enabling phase 2/3 trial will further examine the efficacy and tolerability of FPI-2265

Grade 1 SGrade 2 Grade 3 Grade 4

Secondary Endpoint: PCWG3 and RECIST v1.1 Criteria

- 14/20 (70%) of participants had non-progressive disease per PCWG3 criteria
- Per RECIST v1.1 criteria
- Objective response rate was 3/9 (33%); all 3 participants had a partial response (PR;
- Table 4)

Table 4. Independent reviewer response by RECIST v1.1 criteria

Best Response by RECIST v1.1	Participants Evaluable by RECIST 1.1 (n=9)						
PR, n (%)	3 (33)						
SD, n (%)	4 (44)						
PD, n (%)	2 (22)						
DD prograssive discass: SD stable discass							

PD, progressive disease; SD, stable diseas

Case Study

A 72-year-old male with an 8-year history of prostate cancer (Gleason score 9) with extensive skeletal disease was enrolled into the TATCIST study and received 4 cycles of treatment with FPI-2265. The participant had bone-only mCRPC.

Initial treatment for mCRPC included prostatectomy and external-beam radiation therapy. Subsequently, the participant received bicalutamide, enzalutamide, apalutamide, abiraterone, Radium-223, olaparib, and cabazitaxel + carboplatin. The participant continued treatment with leuprolide during the study.

Disease response to treatment:

- Biochemical response: reduction of PSA by 99.8% (from 1119 to 2.43 ng/mL)
- PSMA-PET/CT: PSMA-tumor volume decrease by 99.9% PCWG3: prolonged non-progressive disease

Non-superscan participants (n=21)

		0.0%	A 00/ 4A 20/									
		0.0.00	4.0 /0 14.3 /0									
		25.0%	9.5% 9.	5%								
		50.0%	4.8% 23.8%									
		25.0%	4.8%4.8%									
		75.0%	61.9%					2	3.8%			
		0.0%	23.8%		23.8%							
		0.0%	23.8%	4	.8%							
		0.0%	14.3%	4.8%								
		0.0%	4.8%4.8%									
20	10	() 10	20	30	40	50	60	70	80	90	100
% of participants ^a			G	irade 1	Srade 2	Grad	e 3					

ESD: Chairman and Medical Director (Excel Diagnostics and Nuclear Oncology Center) and CEO (RadioMedix, licensing drug to Fusion); MJH: Employment (Excel Diagnostics and Nuclear Oncology Center); JK: Employment (Fusion); ON: Employment (Fusion); GG: Employment (Fusion); JS: Employment (Fusion); LN: Nothing to disclose